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Study of the Perturbation Series for the Ground State of a Many-Fermion System. IV 
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We derive through fourth order in the potential strength the many-fermion perturbation series for a 
velocity-dependent force which exactly simulates, in two-body scattering, a hard core. We use the Pade ap-
proximant method to sum the complete series and the ladder and Brueckner approximation series. We com
pare these results with those of the iT-matrix procedure and find that the iT-matrix procedure fails to con
verge for the Brueckner approximation in the only interesting region. We also investigate near saturation, a 
system something like He3. We find that there is not, as some have speculated, a magic cancellation that 
would cause the ring diagrams to be of little importance there. 

I 
I. INTRODUCTION 

N this paper we extend the study of the many-body 
perturbation series which we began in our previous 

paper.1 In that paper we studied the accuracy of the 
ladder and Brueckner approximations both as a sum of 
a set of diagrams and as they are computed in practice, 
for the soft repulsive, square-well potential. In this 
paper we extend our study to a velocity-dependent 
force which exactly simulates a hard core for two-body 
scattering and also to this force plus an ordinary 
attractive force. For the "hard-core" velocity-dependent 
force, both the ladder and Brueckner approximations 
(as a set of diagrams) are satisfactory for low to mod
erate densities. For high densities the Brueckner ap
proximation is still good, but the ladder approximation 
is appreciably less good. However, the Brueckner 
approximation, as ordinarily calculated, does not con
verge for these densities and so as a practical matter 
is no better than the ladder approximation. 

In our previous paper (I) we pointed out that some 
have suggested that near equilibrium, the ring dia
grams, which we found to be quite important for the 
repulsive square-well, may not be nearly so important. 
We have investigated this point in Sec. IV and find 
that, for a case somewhat similar to He3, the ring dia
grams are just about as important as they were for the 
other cases investigated. 

In the second section of our paper we derive the first 
four terms of the perturbation series in the potential 
strength for the "hard-core" velocity-dependent force 
and evaluate them at several densities. In the third 
section we prove that certain Pade approximants form 
rigorous upper and lower bounds to the energy in 
ladder approximation. We then use the Pade approxi
mants to sum the complete series, the ladder approxima
tion series, and the Brueckner approximation series. An 
interesting comparison is made, in ladder approxima
tion, with the result from our previous paper for an 
actual hard-core force as a function of density. 

In the fourth section we repeat the procedure of the 

*Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 G. A. Baker, Jr., J. L. Gammel, and B. J. Hill, Phys. Rev. 
132, 1373 (1963). We shall call this work paper I hereinafter. 

second and third sections for a "hard-core" velocity-
dependent force plus an attractive force. 

II. LOW-ORDER PERTURBATION SERIES TERMS 

For two-body scattering, it is possible to simulate a 
hard core exactly by use of a nonsingular velocity-de
pendent force.2 Let jx(r) be greater than or equal to 
one and /*(oo) = l. Then, if A is Legendre's operator 
with eigenvalues /(/+1), 

„= - ( [><»- l]V2+V/x- V+iV2
M 

+ {M^2-[pW+^]-2}A-|JuTM7(8iu)-^1]) (2.1) 

exactly simulates a hard core of radius 

where 

a= [ {1-0 
Jo 

(r)1-m)dr, 

P W = / [ M W ] - 1 / 2 ^ . 

(2.2) 

(2.3) 

This force does not, of course, exactly simulate a hard 
core in the many-body problem except in the limit of 
zero density where only binary collisions are important. 

We have selected, for convenience in these calcula
tions, 

p,(r) = l+s(Trifi, 
(2.4) 

s = (2e0-5-1)2-1 = 4.2782422, v ; 

which implies a=l3. In momentum representation the 
matrix elements of this potential are 

<vy|w|3ti|> 

/35(^+rj, v+y) J 2Ts(pqexch)
2 

0 l[l+(/3g)2]2 

2irs 
t - e ( < z ) - ^ [ ( ^ e x c h ) 2 - (/3<?)2>0(g) 

- 4 x [ - (/3?)
2+ (/3gexch)2i>2(cos0)>2(<?) (2.5) 

2 G. A. Baker, Jr., Phys. Rev. 128, 1485 (1962). 
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where 

0(o) = — / rdr sinrqe-2rlf>(l+se-rie)-1, 
qPJo 

**(«) 
1 /•« f 

6 0 V o I 
w-

? = l l v + ^ - v - r j [ 

[p(r)+a] : 

^exch 

i* M i 

= l [ y + i j -

(2.6) 

(2.7) 

(2.8) 

12 is the (large) volume of the confining box, 6 is the 
angle between q and qexch, and 5(x,y) the Kronecker 
delta function. 

We have calculated all the terms through fourth 
order in the interaction potential in the Goldstone3 

expansion of the ground-state energy of a system of 
spin-J fermions. Investigation of velocity-dependent 
forces in perturbation theory have been made through 
second order in the nuclear case by Green,4 and 
Da Providenca.5 

We proceed substantially as we did in paper I; and 

we refer the reader to that paper for a detailed descrip
tion of our procedures. We discuss here only the dif
ferences between the present calculation and the pre
vious ones. The differences arise from the fact that the 
potential now depends, not only on the momentum 
transfer as it did before, but also on the exchanged 
momentum transfer and the square of the cosine of the 
angle between these two momenta. In order to save 
computer time, we have approximated the functions ® 
and $k by some simple expressions which we have listed 
in the Appendix and which are usually accurate to a 
few hundredths of a percent. 

If we denote the potential by fl(q/&F/3,qeXch/&Fjft) t n e n 

the first-order contribution is 

3(£F/3)3/(2V4) / dmdn 
•/ | m | < l , | n | < l 

X { » [ 0 , ( m - n ) ] - K ( m - n ) , 0 ] } , (2.9) 

which can be partially done analytically as 

(3/x){ (2/9)R5+A® (0)](ft*!3)»+ (4/15)[^+$„(0)](M) 

riiF» [-2 \ / K \ \(K Mm i-2 \/ K \ 1 / K \ 3 - | 
+ / K*dK\ ( — ) + - ( — ) kK2/2)ZMK/P)+^(K/pn-@(K/fi)/32-y/(l+K2)}. (2.10) 

Jo L3 2\kFpJ 24W/J/ J 
The second-order contribution is 

r 
u7r10) / -3(M)V(2 

where the integration is carried out over all values 
allowed by the Pauli exclusion principle. 

For the third-order contributions we may simply 
replace the potential terms in Eqs. (2.6) to (2.9) of 
paper I by 

B3: (c/py(kFi3)h(q, m - n + q M q - q x , m - n + q + q O 
X[w(qi, m - n + q i ) - J v ( m - n + q i , qi)], (2.12) 

H3: (c//3)4(M)Mq, m - n + q > ( q i , m - n + q i ) 
X [y ( q - qi, m - n + q+ qi) 

- | v ( m - n + q + q i , q - q i ) ] , (2.13) 

R3: ( ^ ) 4 ^ ^ ) 9 { [ . ( q , m + q - q i ) - ^ ( m + q - q i , q ) ] 
X[w(q, n - q i ) - ^ ( n - q i , q)] 
X[>(q, n - m - q ) - ^ ( n - m - q , q)] 
~ |w(m+q-q i , q>(n -q i , q > ( n - m - q , q)} , 

(2.14) 
F3: (c/P)*(krPMq, m-n+q)[>(q, m - n + q ) 

— §»(m—n+q, q)][>(0, m+qi) —w(m+qi, 0) 
-2*(0, q+m+qO+wCq+m+qi, 0)] . (2.15) 

dmdndqv(q, m— n+q)|j;(q, m—n+q)—|fl(m—n+q, q)J 

3 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957). 
4 A. M. Green, Nucl. Phys. 33, 218 (1962); Phys. Letters 1, 136 

(1962). 
5 J. Da Providenca, Nucl. Phys. 40, 321 (1963). 

q2+q-(m-n) 
(2.11) 

For fourth order we may again simply replace the 
potential terms in Eq. (2.10) to (2.20) of paper I. For 
class I, the new term is [note that the factor {1ZFC)~Z in 
(2.10) and (2.11) of paper I should have read (kFc)~%~\ 

(c/py{kF$yh(q,m- •n+q)w(x2,y2>(x8,y8) 
X [>(X4,X5) - M * 5 , X 4 ) ] . (2.16) 

The Xi are tabulated in paper I and the ji are given in 
Table I of this paper. For class IA the new potential 

TABLE I. Arguments of the potentials. 

Diagram 

I.l 
1.2 
1.3+4 
1.6 
II.l 
II.4 
II.5 
II.6 
II.7 
II.9 
11.10 
11.11 

y2 

m - n + q - j - q i 
m - n + q + q i 
m— n-fqi-|-q2 
m— n-f-q2-f-q 
m—n-f-q 
m— n-fq 
m—n-f-q 
q+q2—m—qi 
m—n-f-q 
m—n+ q 
q2—m 
m—n-f-q 

Y3 

m—n+qi+q2 
m—n+qi+q 2 
m—n-f-q+q2 
m— n + q i + q 2 
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term is 

(c/$)S{kF0)* 

X{[^(q,x 2 ) -^(x 2 ,q)][z; (q ,X3)~^(x3,q)] 

X[^ (q ,x 4 ) -^ (x 4 , q ) ] [z ) (q ,x 5 ) -^ (x5 ,q ) ] 

+ ^ ( x 2 , q > ( x 3 , q M x 4 , q > ( x 5 , q ) } . (2.17) 

For class I I the new potential term is 

(c//5)«(*rf)u{»(xi,y2)[»(x2 |X8)-^(x8,x2)] 

Xt>(x4,x5) — J^(x5,x4)][z;(x4,X6) — |w(x6,x4)] 

-|^(xi,y2)^(x3,x2)^(x5,x4)z;(x6,x4)}. (2.18) 

In order to write out the new potential term for class 
IIA it is convenient to define 

V1=v(xhX2), V2=v(x2,Xi) 

fl3^(x3,x4), z)4=^(x4jx3) 

vb=v(xhxb), VQ=V(X5,X1) 

V7=V(XZ,XG) , »8= v(x6,xz). 

Then the new potential term is 

(c/0) 6 (k F0)12 { ViVzVbV7+ V!V4VbV8+ V2V^V6V7 

— i (VlV3VsV8+ V!VSVeV7+ ViV4V5V7+ V!VAV&V8 

+ V2VzVbV7+V2VzVeV8+V2VAV5V8+ V2V4VGV7) 

+ i (ViVdVQV8+ViViV6V7+ V2VZVbV8 

+ ̂ 4^7+W4Ws)} • (2.20) 

For class I I I the new potential term is 

(c/j8)6(ftF/5)uw(q,m-ii+q) 

X [y (q, m - n + q) - \v(m- n + q, q)] 

X^(x 2 x 3 ) [^ (x 2 ,x 3 ) -^ (x 3 ,x 2 ) ] . (2.21) 

For diagram IV. 1 the new potential term is 

(c / /3)6(£ F £) iMq,m-n+q) 

X[>(q, m — n + q ) —|»(m—n+q, q)] 

X [ - 2 H 0 , m + q + m i ) + t ; ( m + q + m i , 0) 

-2z;(0, n - q + m O + f l C n - q + m i , 0 ) + 2 A ( 0 , m + m i ) 

- » ( m + m i , 0)+2z>(0, n + m i ) - w ( n + m i , 0)] 

X [ - 2 v ( 0 , m + q + m 2 ) + ^ ( m + q + m 2 , 0) 

— 2z>(0, n— q+m 2 )+^(n— q+m 2 , 0)+2fl(0, m + m 2 ) 

- f l ( m + m 2 , 0)+2v(0, n + m 2 ) - z ; ( n + m 2 , 0)] (2.22) 

and for diagram IV. 2 it is 

{c/py{kF$y2v(<i, m - n + q > ( q - q i , m - n + q + q i ) 

X[w(qi, m—n+qi ) —iv(m—n+qi , qi)] 

X[-2i>(0, m + q + m i ) + * ( m + q + m i , 0) 

+2v(0, m + m i ) - w ( m + m i , 0 ) ] . (2.23) 

A N D M c K E E 

For diagram IV.4 it is 

(c/pnkFp)*{[v(q, m - n + q ) - M m - n + q , q)] 
X[w(q, n - q i ) - ^ ( n - q i , q)] 
X|>(q, m + q ~ q i ) - | » ( m + q - q i , q)] 
- f v ( m - n + q , q )» (n -q i , q > ( m + q - q i , q)} 
X [ - 2 » ( 0 , m + q + m i ) + t > ( m + q + m i , 0) 
-2z;(0, n - q + m i ) + w ( n - q + m i , 0)+2fl(0, m + m i ) 
- v ( m + m i , 0)+2^(0, n + m i ) - v ( n + m i , 0 ) ] (2.24) 

and for diagram IV. 6 it is 

(c/py(kFp)12v(q, m - n + q > ( q - q i , m - n + q + q i ; 

X[w(qi, m - n + q i ) - ^ ( m - n + q i , q i ) ] 
X [ - 2 w ( 0 , m + q + m 1 ) + » ( m + q + m i , 0 ) 

+2z;(0, m + m O - v C m i + m i , 0 ) ] . (2.25) 

We have now written out all the modifications made 
to the integrals given in paper I. The explicit integrals 
and diagrams are listed and drawn therein. We have 
evaluated them by the same Monte Carlo method as 
used before, using 1X105 to 2 X106 Monte Carlo repeti
tions. As a minor variant we have found it more effi
cient to let the angle (rather than the cosine of the 
angle) between q and qi be uniformly distributed in 
diagrams B3, 1.1, I I . 1, II.5 and II.6 (also the angle 
between qi and q2 in 1.1). This change tends to empha
size the parallel and antiparallel momenta. 

We shall now tabulate (Table II) our best values for 
each diagram along with an estimate of the standard 
deviation for a selection of densities. As the calculations 
are fairly lengthy, we have not attempted to get accu
rate values of the smaller diagrams. The diagrams 
which are included in the Brueckner approximation6 

are Bl , B2, B3, F3, L I , I I I . l , I I I . 7 + 8 , IV.l , IV.2, 
and IV.3. 

III. COMPARISON OF THE RESULTS WITH THE 
LADDER AND BRUECKNER APPROXIMATIONS 

We shall sum the perturbation series coefficients 
derived in the previous section by the Pade approxi-
mant method.7 I t is doubtless true that the perturbation 
series for the many-fermion energy, as well as for the 
ladder and Brueckner approximations to it are asymp
totic series for our potential, as has been shown for the 
soft, repulsive, square-well potential.8 However, it is 
also probably true for this potential, at least for low 
enough density (and, we feel, for all densities for this 
potential), that there is a unique, regular function of 
the strength V for positive real V, 0 < V< 1. 

We shall now determine the nature of the ladder 
approximation series. Let v be the two-body potential 

6 K. A. Brueckner, The Many-Body Problem, edited by C. deWitt 
(John Wiley & Sons, Inc., New York, 1959), pp. 65 ff. 

7 G. A. Baker, Jr., and J. L. Gammel,«J. Math. Anal. Appl. 2, 
21 (1961); G. A. Baker, Jr., J. L. Gammel, and J. G. Wills, J. 
Math. Anal. Appl. 2, 405 (1961); H. S. Wall, Continued Fractions 
(D. Van Nostrand Company, Inc., Princeton, New Jersey), 
Chap. XX; and Ref. 10 of paper I. 

8 G. A. Baker, Jr., Phys. Rev. 131, 1869 (1963). 
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operator, and l/bi=P/{H^—El)} where HQ is the two- jection operator which is zero for states in the Fermi 
body kinetic energy operator, E* the unperturbed sea and unity otherwise. The energy shift is then, in 
energy of the relevant two-body state, and P a pro- ladder approximation, 

/ I 1 1 1 1 1 1 | v 
AE== XY \l/Av\—v—v\2+v—v—v\z—v—v~v—v\A-\ h^*/> (3-1) 

* \ I bi bi bi bi bi bi I / 

where the sum on i is over the Fermi sea and X is regarded as an expansion parameter. The operator v is not posi
tive definite as it was for the soft, repulsive, square-well case discussed in paper I; however, we may proceed as 
follows. Equation (3.1) may be rewritten as 

A £ = E E < ^ h | ^ » - x f z / ^ l - ( v )\+( v ) X 2 - ( v ) X: 

i V L A I W ' W 2 / W /2W /2/ W / 2W2 / 
=E<*<M*<>]x-x2E<^ (3-2) 

i i 

where <£>*= (l/bill2)v\pi. Now the operator Vi is Hermitian because v is Hermitian and, in momentum 

TABLE II. Monte Carlo calculations. 

^0=0.5 kFl3 = 1.0 
Diagram 

Bl a 

B2a 

B3a 

H3 
R3 
F3 a 

S3 
Br 3 
LI* 
1.2 
1.3+4 
I.5b 

1.6 
IA.l 
IA.2 
IA.3 
II . l 
II.2b 

II.3 
II.4b 

II.5 
II.6 
II.7 
II.8 
II.9 
11.10 
I I . l l b 

II.12b 

IIA.l 
IIA.2 
IIA.3 
IIA.4b 

IIA.5 
IIA.6 
I I I . l a 

III.2 
I I I .7+8 a 

III .9+10 
IV.la 

IV.2a 

IV.3a>b 

IV.4 
IV.5b 

IV.6 
IV.7b 

2 4 
Br 4 

Value 

3.4043171X10"2 

-3.772 X10-2 

8.665 X10"2 

1.20 X10-3 

-5 .84 XIO"3 

1.81 X10-3 

8.382 X10-2 

8.846X10-2 

-2 .29 XIO"1 

-2 .10 X10~3 

-1 .57 XIO"3 

-2 .10 X10"3 

-1 .18 XIO-4 

-5 .59 XIO-4 

-2 .10 X10~4 

-4 .97 X10~4 

1.07 XIO"2 

1.07 XIO"2 

+2.88 XIO"4 

+2.88 XIO"4 

3.37 XIO"3 

5.25 X10~3 

-2 .78 X10~4 

-3 .23 XIO"4 

+ 1.46 XIO"4 

6.48 X10"5 

-3 .23 XIO"4 

-2 .78 XIO"4 

-3 .59 XIO"3 

5.85 XIO"4 

-1.046X10"4 

5.85 XIO"4 

4.02 XIO"4 

3.88 XIO-4 

-7 .75 XIO"3 

-5 .20 XIO-4 

8.99 XIO"3 

6.76 X10~4 

-7 .44 XIO"5 

-3.72 XIO"3 

-3.72 XIO"3 

2.69 X10~4 

2.69 XIO"4 

-5 .58 XIO"5 

-5 .58 XIO"5 

-2 .14 XIO"1 

-2 .36 XIO"1 

Deviation 

8.3 XIO"5 

2.1 XIO"4 

1.2X10"5 

2.3 X10~5 

1.4X10"5 

2.1X10"4 

2.1X10"4 

1.4X10-3 

2.3 XIO"5 

1.9X10"5 

2.3 XIO"5 

2.4X10"6 

7.4X10-6 

1.9X10-6 

6.2 X10~6 

1.4X10"4 

1.4X10"4 

3.7X10-6 

3.7X10"6 

5.6X10"5 

1.4X10"4 

2.4X10-6 

2.8X10"6 

2.8X10"6 

1.7X10"6 

2.8X10-6 

2.4X10-6 

2.7X10"5 

8.0X10-6 

1.7X10"6 

8.0X10-6 

4.0X10-6 

4.4X10"6 

l.oxio-4 

8.1 X10"6 

9.1 X10~5 

1.1X10-5 

3.6X10-7 
l.ixio-4 

1.1X10-4 

9.6X10-7 

9.6X10-7 

2.8X10-6 

2.8X10-6 

1.5X10-3 

1.4X10-3 

Value 

3.5338219X10"1 

-2.206X10-1 

4.418X10"1 

2.01 XIO"2 

-8 .27 XIO"2 

6.91 XIO"2 

4.483 XIO"1 

5.109X10"1 

-9 .04 XIO-1 

-3 .55 XIO"2 

-1.92 XIO"2 

-3 .55 XIO"2 

-4 .75 XIO-3 

-1 .80 XIO"2 

-4 .68 XIO"3 

-1 .54 XIO"2 

1.58 XIO"1 

1.58 XIO-1 

1.036X10"2 

1.036X10"2 

4.05 XIO"2 

5.81 XIO"2 

-6 .63 XIO"3 

-7 .27 XIO-3 

2.84 XIO"3 

2.42 XIO"3 

-7.27 XIO"3 

-6 .63 XIO"3 

-5 .58 XIO"2 

2.35 XIO"2 

-4 .98 XIO"3 

2.35 XIO"2 

9.82 XIO"3 

8.79 XIO"3 

-1 .30 XIO-1 

-1 .82 XIO-2 

1.23 XIO"1 

1.88 XIO"2 

-2 .15 XIO"2 

-1 .31 XIO"1 

-1 .31 XIO"1 

2.66 XIO-2 

2.66 XIO"2 

-6 .45 XIO"3 

-6 .45 XIO"3 

-8 .68 XIO"1 

-1.195X10° 

Deviation 

4.0X10-4 

2.1X10-3 

2.3X10"4 

5.6X10-4 

6.0X10"4 

2.3X10"3 

2.2X10"3 

1.5X10-2 

5.8X10"4 

4.0X10-4 

5.8X10-4 

1.3X10"4 

3.2X10-4 

8.5X10"5 

5.4X10-4 

3.7X10"3 

3.7X10"3 

2.3X10"4 

2.3X10"4 

1.4X10-3 

2.5X10-3 

1.4X10"4 

1.4X10-4 

1.5X10"4 

1.2X10"4 

1.4X10-4 

1.4X10-4 

9.0X10"4 

5.2X10"4 

1.5X10-4 

5.2X10"4 

3.4X10-4 

3.0X10-4 

2.6X10-3 

5.4X10-4 

2.2X10-3 

4.9X10"4 

8.8XIO-5 

3.2X10-3 

3.2X10"3 

2.1X10-4 

2.1X10-4 

4.9X10-^ 
4.9X10"4 

1.9X10-2 
1.7X10-2 

(Pi) 



A926 B A K E R , H i L L , A N D M C K E E 

TABLE II {continued) 

;bv3= 1.5 # # jfei# = 2.0 
Diagram Value Deviation Value Deviation 

Bl a 1.5966883X10° 5.0158397X10° 
B2a -6.639X10-1 1.4X10-3 -1.661X10° 5.0X10~3 

B3a 1.054X10° l.OXlO-2 1.988X10° 4.0X10"2 

H3 8.71 X10~2 1.6X10"3 2.28 XIO"1 7.2X10"3 

R3 -2 .96 X10"1 5.3X10"3 -6 .46 XIO"1 1.3X10-2 

F3a 6.37 X10-1 4.5X10-3 3.59 X10° 2.6X10"2 

S3 1.482X10° 1.2X10"2 5.16 X10° 5.0X10"2 

Br 3 1.691X10° 1.1X10"2 5.58 X10° 4.8X10"2 

I . l a -1 .77 X10° 1.1X10-1 -3 .10 X10° 5.3X10-1 

1.2 -1 .52 X10"1 4.9X10-3 -3 .85 XIO"1 2.5X10"2 

1.3+4 -6 .48 X10"2 3.3X10-3 -1 .43 XIO"1 1.5X10"2 

I.5b -1 .52 XIO"1 4.9X10-3 -3 .85 X10"1 2.5X10~2 

1.6 -3 .19 X10~2 1.4X10-3 -1 .06 XIO"1 7.5X10-3 

IA.l -1.096X10-1 2.8X10-3 -3 .96 XIO"1 2.4X10"2 

IA.2 -2 .26 XIO"2 1.1X10-3 -8 .12 X10~2 9.3X10~3 

IA.3 -9 .24 X10~2 6.3X10-3 -3 .60 XIO"1 7.7X10"2 

II.l 5.93 XIO"1 3.2X10"2 1.45 X10° 1.0X10"1 

II.2b 5.93 XIO"1 3.2X10"2 1.45 X10° 1.0X10"1 

II.3 6.37 XIO"2 3.0X10-3 2.12 XIO"1 1.9X10-2 

II.4b 6.37 XIO"2 3.0X10-3 2.12 XIO"1 1.9X10-2 

11.5 1.26 XIO"1 8.3X10-3 2.11 XIO"1 4.0X10"2 

11.6 1.57 XIO"1 1.4X10"2 2.03 XIO"1 4.9X10"2 

11.7 -2 .75 X10~2 1.7X10-3 - 6 . 2 XIO"2 LOXIO"2 

11.8 -3 .27 X10~2 1.9X10-3 - 7 . 7 XIO"2 1.2X10"2 

11.9 4.93 XIO"3 1.9X10-3 - 2 . 8 XIO"3 7.8X10-3 

11.10 1.49 X10~2 1.3X10-3 4.50 X10~2 7.1X10"3 

I I . l l b -3 .27 XIO"2 1.9X10"3 - 7 . 7 X10~2 1.2X10-2 

II.12b -2 .75 XIO"2 1.7X10-3 - 6 . 2 X10~2 1.0X10"2 

IIA.l -2 .61 XIO"1 9.4X10-3 -9 .74 XIO"1 7.0X10"2 

IIA.2 1.88 XIO"1 6.9X10-3 8.59 XIO"1 5.7X10"2 

IIA.3 -3 .63 XIO"2 2.3X10-3 -1 .39 XIO"1 1.7X10-2 

IIA.4b 1.88 XIO"1 6.9X10-3 8.59 XIO"1 5.7X10"2 

IIA.5 5.41 X10~2 5.3X10-3 1.77 XIO"1 3.6X10"2 

IIA.6 4.08 XIO"2 4.0X10-3 1.18 XIO"1 2.6X10"2 

I I I . l a -7 .64 XIO"1 2.9X10"2 -3 .30 X10° 2.2X10"1 

III.2 -1 .23 XIO"1 7.1X10-3 -5 .03 XIO"1 4.6X10"2 

I I I .7+8 a 5.61 XIO"1 2.6X10"2 1.88 X10° 2.7X10"1 

IIL9+10 1.06 XIO"1 6.0X10-3 3.99 XIO"1 4.0X10"2 

IV.la -6 .11 XIO"1 3.6X10-3 -7 .68 X10° 7.8X10"2 

IV.2a 'b -1 .02 X10° 3.4X10"2 -4 .51 X10° 2.7X10"1 

IV.3a -1 .02 X10° 3.4X10-2 -4 .51 X10° 2.7X10"1 

IV.4 2.94 XIO"1 8.0X10-3 1.24X10° 1.2X10"1 

IV.5b 2.94 XIO"1 8.0X10-3 1.24 X10° 1.2X10"1 

IV.6 -8 .50 XIO"2 7.6X10-3 -5 .13 XIO"1 5.7X10"2 

IV.7b -8 .50 X10~2 7.6X10-3 -5 .13 XIO"1 5.7X10~2 

24 -3 .18 X10° 1.5X10"1 -1 .73 XIO1 9.2X10"1 

Br 4 -4 .62 X10° 1.4X10"1 -2 .12 XIO1 8.4X10"1 

a Included in the Brueckner approximation. 
b Identical with a previous diagram (but must be added to find the total fourth-order coefficient). 

representation, 1/bi is non-negative definite so that 
l/bi1/2 is real and non-negative definite. The eigenvalues 
of Vi are greater than — 1. To see this result, we first 
note that, due to the P in 1/bi112, the <pi must be ex
pandable in terms of 

e x p [ i ( q + m ) T i + i ( n - q ) - r 2 ] , 

\q+m\>kF, |n— q | > & F . 

The eigenvalue equation is 

Vi<p=T<p, (3.4) 

where we seek the smallest T. The value of Ei in Vi is 

2Ei= m2+n2=i ( m + n ) 2 + | ( m - n)2 . (3.5) 

Substituting 
<p=(Ho-Eiyi2u, (3.6) 

where co must also have the form (3.3), Eq. (3.4) may 
be written as 

vu = T(Ho-Ei)oi. (3.7) 

If we let Hr be the relative Hamiltonian and r the 
separation distance | ri— r21, then separating off the 
center-of-mass motion of the pair, Eq. (3.7) becomes 

[_HT- ( l / r > > = i ( m - n ) V (3.8) 

For simplicity, and without loss of generality, we select 
m = n = 0 . The eigenvalue problem now becomes 

[ f l ' r - ( l / r » = 9 T l r c o = 0, q>kF. (3.9) 
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Now because of the term —A/r2 in Hr, the operator cJTCr 
is non-negative for T < —1 [see Eqs. (2.1) and (2.5)]. 
In fact, because of the restriction q>JtF, the smallest 
eigenvalue of 2fTlr is strictly positive for T < •— 1. Thus, 
Vi has no eigenvalues less than — 1. Minus one is also 
the greatest lower bound for the eigenvalues of Vi. 
This result is not necessary here, but can be seen from 
the results given by Morse and Feshbach.9 

If we now expand the <pi of (3.2) in a complete, 
orthonormal set of wave functions a?a which are eigen-
functions of Vi in the allowed subspace, Eq. (3.2) 
becomes 

i i k 

-tV\»+---)R*l*]}- (3-10) 
Since | a « | 2 > 0 , a i d it is easily demonstrated that 

E(^k-DU<) = E|««|a (3.H) 
i \ I bi I / i,k 

is finite, and if we denote by — (— l)pcp the coefficient 
of Xp+2 in (3.10), then there exists a nondecreasing 
function <p(u) such that 

cp= J uH<p{u), p = 0, 1, 2, • • •. (3.12) 

The function <p will take on infinitely many values if 
and only if there are infinitely many eigenvalues in
volved. Thus we may formally sum the ladder series as 

A E = c _ i X - X / . (3.13) 
J_! 1+U\ 

If we let 

*7 = X / (1 -X) , v = u+l, <f>(v)=<p(v-l), (3.14) 

then we. may rewrite (3.13) as 

c-! : = / — — . (3.15) 
vi/(l+rj) Jo l+yv 

The form on the right-hand side is necessary and suffi
cient for that function to be a series of Stieltjes.10 As 
the coefficients only diverge like p\ we are dealing 
(Theorem 88.1)10 with the case of a unique <£. {An addi
tional complication appears in the proof of this di
vergence rate for this potential; namely the potential 
[Eq. (2.5)] diverges like ^xch2 when qexchS>q, rather 
than going to zero like q~2 as with the soft, repulsive 
square-well. As is apparent through fourth order from 
the results of the previous section, one can show that 
none of the perturbaton series diagrams diverge for 
infinite values of the internal momentum on this ac-

9 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), p. 1666. 

10 H. S. Wall, Analytic Theory of Continued Fractions (D. Van 
Nostrand Company, Inc., New York, 1948), Chap. XVII. 

count and nothing extraordinary happens at infinity. 
Consequently the arguments bounding the rate of 
divergence of the series remain essentially as they were 
for the square-well potential.8} Using (3.15), the fact 
that 

{AEin/ii+vn-c^/a+^+coiv/a+vm 
X(l+77)2 /¥ (3.16) 

is also a series of Stieltjes, Wall's problem10 (17.3), and 
some elementary properties of the Pade approximants,7 

we may prove 

[ » J » + l ] ( X ) > A £ ( X ) > [ » , n + 2 ] ( X ) , 0 < X < 1 (3.17) 

for the energy shift in ladder approximation. We note 
that the £w+l , ?H-1] lies between the bounds given in 
(3.17) and presumably is closer to the exact answer 
though not necessarily a lower bound as it was for the 
soft, repulsive, square-well potential. 

We have plotted in Fig. 1 the £2,2] Pade approxi
mants at V= 1.0 (the two-body, hard-core equivalent) 
to the complete perturbation series, the ladder approxi
mation, and the Brueckner approximation. We have 
divided by the first-order energy to provide an appro
priate scale. Unity is, of course, a rigorous upper bound 
for the energy. We estimate from the rigorous upper 
and lower bounds for the ladder approximation, the 
internal consistency between the £1,2] and £1,3] Pade 
approximants for the other cases and the statistical 
error in the coefficients indicate that accuracy of the 
curves is about 3 % near kw^—0. The accuracy improves 
to about 1% near kpP= 1.0 and declines to around 2 % 
near £ ^ = 2 . 0 . We believe that, except near crossing 
points, the relative accuracy is sufficient to order cor
rectly the various approximations. 

The qualitative features are similar to those obtained 
for a soft, repulsive, square-well in paper I. At low 
density (kF/3<0.5), the Brueckner approximation again 
lies above the ladder approximation while the complete 
perturbation series lies below the ladder approximation. 
At high densities {kpfi> 1.0), the complete perturbation 
series lies above the Brueckner approximation which, 
in turn, lies above the ladder approximation. Here the 
flag (bubble) diagrams dominate the series for this 
potential and thus the Brueckner approximation is 
much more accurate than the ladder. 

Quantitatively, the differences between the various 
curves is much smaller than for the repulsive square-
well. Except at high density, where the ladder approxi
mation falls decidedly below the others, the differences 
are relatively insignificant. The much smaller dif
ferences are probably due to this potential being much 
better suited to perturbative treatment than the hard
core potential.11 By this statement we mean that when 

11 The suggestion that this advantage might exist was first 
made, we believe, by R. E. Peierls, Proceedings of the International 
Conference on Nuclear Structure, Kingston (University of Toronto 
Press, Toronto, 1960), p. 7. 
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BRUECKNER APPROXIMATION 
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0.5 !.0 1.5 2. 

k,/9 

FIG. 1. Sum of complete perturbation series, ladder approxima
tion series, and Brueckner approximation series as given by the 
[2,2] Pade approximant in units of the first-order coefficient. 
The tick mark on the left border is the exact zero density value. 

calculating by series expansion a function near an 
argument of unity, the omission of sequences of terms 
starting in third and higher orders is apparently less 
important than doing so in the calculation of the value 
of a function near an argument of infinity. 

The point at &FJ#=0 .0 was obtained as follows. For 

zero densities, as is well known, all the curves tend to 
the zero-energy scattering length for the potential in 
question. We may compute the scattering length for 
our potential by solving the differential equation 

(l+Vs<rr)u"-Vse-ruf 

+0.25Vlse~r~0.25s2e~2r(l+se~r)--1']u=0. (3.13) 

We have solved this numerically and differenced the 
resultant scattering lengths as a function of V. We find 
that the energy is given by 

l i m [ £ / ( ^ r f ) 3 ] = 0.242194F-0.4357F2 

+ 1.119F3-3.312FH . (3.19) 

The Pade approximants are then computed from these 
coefficients. 

In order to investigate the accuracy of the usual 
numerical solution procedures for the ladder and 
Brueckner approximations, we have used the method 
described in paper I, to which the reader is referred for 
more details, except it was necessary to modify some 
of the equations for the velocity-dependent force. In
stead of 1(5.7) we have for the Green's function 
(actually rWG) 

2 

P / ( 2 Z + l ) ] ( r / r O w r<r'\ 

- ( 4 Z + 2 ) - 1 r = V 

. - [ ( / + D / ( 2 / + l ) ] ( r 7 r ) 1 r>r>> 

+se-*Vf* \ h"dh"\ 1 \ji(kfY)\ k"ji 
Jo L2rE(k")-A(k)l J L 

(ft"r) + j^Vr) jl+1(k"r) 
21+1 2 /+1 

(1 / 4 \se~r \ /l+se~r r 
Vl-se-Hl -)+Kl+m h 

14 \ r l+se-'J \ r2 L 

The wave function (X=r2Vu) satisfies the integral equation 

2 

, - r W 2 X /l+se~r r /l+(l+se~r) 
H-21n[- )D 

ji(k"r)ji(k'Y) 
X / k"*dk"- F(P,k",k). (3.20) 

'„ 2 [ £ ( £ " ) - A ( £ ) ] 

(l+Vs<r*)X. Gki{r/)Xhl{r')dr' 
2 r 

n(r)+-
TJ o 

= -f*Vls(rr\-&+-(l — — } +*(*+!) I k + 2 1 n ( 
V L 4 \ r 1 + ^ - V J I r2 L \ 

/l+(l+se-r) 

-)])> (kr) 

k\—J 
L21+1 

l+l 
+rWse"k\ iw(fo-) — jm(kr ) (3.21) 

21+1 J 

instead of 1(5.9), and the K matrices are given by instead of 1(5.10). The rest of the equations and pro-
r. M cedures remain unchanged except we now use a spacing 

Ki(k)=-I ji(kr)Xtl(r)dr 
7rJ 0 

(3.22) °t niinQ/?,l/(2^/r)J in the r meshes and carry them to 
9/3. G# is set to unity in the above equations.) A modified 
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trapezoidal rule based on the Euler-Maclaurin sum 
formula12 is used on the discontinuous term in the 
Green's function to reduce the accumulation of integra
tion errors due to its shape. Due to the cancellation 
between attractive and repulsive parts of this potential, 
it is essential to do a careful numerical job. 

Since 7 = 1 . 0 is a singular point, it should not be 
surprising to find that there is a very strong numerical 
cancellation on the left-hand side of (3.21) for this 
value. Consequently, the numerical results, except at 
low density, are not too accurate for 7 = 1.0 and we 
have chosen to study 7 = 0 . 7 5 and 0.875 instead. By 
comparison of the upper and lower bounds obtained by 
the Pade method with the results of the iT-matrix 
solution for the ladder approximation, we conclude that 
the error increases from about one-tenth of a percent 
at zero density to of the order of 5 % (low) at a density 
of two. We believe we have retained an adequate 
number of partial waves, namely one for kF/3=10~4

} 

three for & F / 3 = 0 . 5 , five for &ir/3=1.0, and six for kFP 
= 1.5 and 2.0, which latter was the maximum number 
our computer program could conveniently handle. 

We have calculated the Brueckner approximation for 
7=0 .75 . According to the Pade method, the shift 
from the ladder approximation for & F / 3 = 0 . 5 and 1.0 is 
0.9% and 2.2%, respectively. The iT-matrix code gives 
shifts of 0.08% and 2.7% at these two points. The in
consistency of the shifts is no doubt due to Brueckner's 
treatment of off-energy shell effects as pointed out in 
paper I. For kF/3= 1.5, the Pade method gives a shift 
of 3.7%; however, the iT-matrix method fails to con
verge at this and higher densities. The failure of con
vergence at this point can perhaps be understood by 
reference to Table I I . Between kpfi— 1.0 and 1.5, the 
correction diagrams included in the Brueckner ap
proximation become comparable in size to the ladder 
diagram. Thus it is not too surprising that an iterative 
type procedure of the sort needed to solve the iT-matrix 
equation may fail with those relative magnitudes be
tween the initial and correction terms. Referring to 
Fig. 1, we feel, although the Brueckner approximation 
is clearly superior to the ladder at high density for this 
potential, that, since the "as practiced" Brueckner 
approximation fails to converge there and is at least as 
inaccurate as the ladder approximation for lower density 
and is harder to compute, there is no practical ad
vantage to the Brueckner approximation as practiced 
for the potentials we have investigated. 

In order to give some idea of the differences which 
can arise in the solution of a many-body problem even 
though the two-body forces are equivalent for the 
simple two-body problem, we have plotted in Fig. 2 
the ratio of the velocity-dependent force result to the 
hard core results of paper I in ladder approximation. 
That the ratio drops can be understood qualitatively 

o.o 

K0 
FIG. 2. Ratio of the hard-core simulating, velocity-dependent 

force energy shift to the hard-core force energy shift in the ladder 
approximation. 

from the observation that the energy for the hard-core 
system goes to infinity at some jamming density, while 
for the velocity-dependent force the energy does not. 
Thus, even in ladder approximation, we would expect 
that the hard-core force would seem the stronger force. 

IV. MOCK He3 

In this section we shall investigate the suggestion by 
Brueckner (paper I, Ref. 4) that the ring diagrams will 
not be as important corrections near equilibrium as the 
flag (bubble) diagrams are for potentials with long-
range attractions and short-range repulsions. We select 
for our force 

W(R)=*-Aer*ie[l-lse-Mlr* R>P 
(4.1) 

+ oo R<p, 
which is equivalent to the velocity-dependent force of 
Sec. I I minus 

V(r) = Aer*"i (4.2) 

with the Fourier transform 

V(k) = STTAI3S11+ {W]~2. (4.3) 

If we wish a potential similar to that between two 
He4 atoms, according to Larsen,13 we must pick a hard
core radius /3== 2 AX 10~8 cm and a dimensionless strength 
slightly less than unity (0.96-0.997). If we assume the 
same strength of interaction for He3, we get by solving 
Schrodinger's equation for the constant A, the dimen
sionless value 

MA(32/h2^ 2.5368, (4.4) 

which corresponds to unit strength for He3. Using this 
12 See, for instance, P. Franklin, A Treatise on Advanced Calculus 

(John Wiley & Sons, Inc., New York, 1949), Sec. 322. 
13 S. Y. Larsen, Phys. Rev. 130, 1426 (1963). 
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TABLE III. Monte Carlo calculations. 

Dia
gram 

Bl 
B2 
B3 
H3 
R3 
F3 
S3 
Br 3 

fcpj8 = 0.75 
Value 

-4.573258X10-2 

-6 .91 X10-2 

1.32 XIO"1 

1.23 XIO"3 

-5 .44 XIO"3 

4.85 XIO"3 

1.33 XIO"1 

1.37 XIO"1 

Deviation 

5.8X10"4 

1.8X10"3 

1.7X10-5 

5.0X10"5 

6.9X10"5 

1.8X10"3 

1.8X10-3 

kF& = 
Value 

-9.799826X10" 
-1 .67 XIO"1 

2.89 XIO"1 

6.71 XIO"3 

-3 .02 XIO"2 

3.82 XIO"2 

3.04 XIO"1 

3.27 XIO"1 

1.0 
Deviation 

- 2 . . . 

1.2X10-3 

5.3 X10~3 

7.9X10"5 

2.1X10"4 

4.1X10"4 

5.3X10-3 

5.3X10"3 

^ = 1 . 2 5 kF^ = l.S0 

Bl 
B2 
B3 
H3 
R3 
F3 
2 3 
Br 3 

-1.2827432X10" 
-3.337 XIO"1 

5.24 XIO"1 

2.09 X10~2 

-8 .81 XIO"2 

1.64 XIO"1 

6.21 XIO"1 

6.88 XIO"1 

• 1 . . . 

7.OXIO-4 

4.1X10-3 

2.6X10"4 

6.8XIO-4 

I.6XIO-3 

4.5X10-3 

4.4X10-3 

-5.62131X10-3 

-5 .99 XIO"1 

7.81 XIO"1 

4.79 XIO"2 

-1 .84 XIO"1 

5.22 XIO"1 

1.167X10° 
1.303X10° 

3.3X10-3 

2.8X10"2 

7.4X10"4 

2.1X10-3 

5.6X10-3 

2.9X10"2 

2.9X10"2 

value of A one can calculate by the methods outlined 
below, that saturation occurs at roughly the right den
sity ( 2<&F/3<3) but that the minimum implies sub
stantially more binding energy than one observes 
experimentally (over four times as much). This lack of 
agreement is of no particular concern, because as we 

have pointed out in the previous section, at high densi
ties the velocity-dependent force is much less repulsive 
than the hard core it simulates exactly at low density. 
Referring to Table II, we see that at high density the 
flag diagrams are dominant and the ring diagrams rela
tively small. This fact makes the region of the He3 

minimum a poor one to study cancellation of the ring-
diagram correction to energy. We have therefore chosen 

A to be about one-half the value given in (4.4), i.e., 

MA/32/k2= 1.25. (4.5) 

The minimum of the energy turns out to be at about 
&j?$=1.25. We obtained this result by repeating the 
calculations described in Sec. II using a potential equal 
to that of (2.1) minus that of (4.2). We have computed 
through third order all the perturbation theory terms 
for kFp=0.7S} 1.00, 1.25, and 1.50. The Pade approxi-
mant method then enables us to select kFP~ 1.25 as the 
value closest to saturation. As can be seen from a 
comparison of the results in Table III with those in 
Table II, while the magnitude of the ring diagram is 
reduced compared to its value for a purely repulsive 
force; so also, and by about the same factor, are all the 
other diagrams. This conclusion is reinforced and ex
tended by the results for fourth order which we give 
in Table IV. We see, on the basis of these results, no 
reason to believe that being near saturation measurably 
improves the Brueckner approximation. In Table V we 
give, based on the [2,2] Pade approximant, the values 
of the ladder approximation, Brueckner approximation 
and complete theory for £2$ = 1.25. The shift from the 
[1,2] approximants are 0.01 to 0.02. Thus we estimate 
the accuracy of these results to be 5% or better. The 
[1,2] and [1,3] Pade approximants again form rigorous 

upper and lower bounds. In order to thus bound the 
ladder approximation, we see from the work of the 

TABLE V. [2,2] Pade approximants. 

Theory Value Deviation 

Ladder -0.274 0.007 
Brueckner -0.258 0.006 
Complete -0.257 0.007 

TABLE IV. Monte Carlo calculations. 

£2^=1.25 
diagram 

I. l a 

1.2 
1.3+4 
I.5b 

1.6 
IA.1 
IA.2 
IA.3 
II. 1 
II.2b 

II.3 
II.4* 
II.5 
II.6 
II.7 
II.8 
II.9 
11.10 
I I . l l b 

II.12b 

Value 

-9.24X10-1 

-3.69X10-2 

-2.05X10-2 

-3.69X10-2 

-4.84X10-3 

-1.79X10-2 

-4.48X10"3 

-1.36X10"2 

1.69 XIO"1 

1.69 XIO"1 

8.82 XIO"3 

8.82 XIO"3 

3.84X10-2 

6.49X10-2 

-7.30X10"3 

-1.03X10-2 

1.81 XIO"3 

1.81 XIO"3 

-1.03X10-2 
-7.30X10-3 

Deviation 

4.1X10-2 
7.8X10-4 

6.8XIO-4 

7.8X10-4 

I.6XIO-4 

3.6X10-4 

7.9X10"5 

2.0X10"4 

5.4X10"3 

5.4X10"3 

2.6X10-4 

2.6X10"4 

2.4X10"3 

3.1X10-3 

1.5X10"4 

1.7X10-4 

1.7X10-4 

8.0X10-5 

1.7X10-4 

1.5X10"4 

Diagram 

IIA.l 
IIA.2 
IIA.3 
IIA.4b 

IIA.5 
IIA.6 
III.l* 
III.2 
I I I .7+8 a 

III.9+10 
IV.la 

IV.2a 

IV.3a 

IV.4 
IV.5b 

IV.6 
IV.7b 

24 
Br 4 

Value 

-6 .83 XIO"2 

1.90 XIO"2 

-2 .32 XIO"3 

1.90 XIO"2 

1.26 X10-2 

9.60 XIO"3 

-2 .09 XIO"1 

-1 .91 XIO"2 

1.66 XIO"1 

2.06 XIO"2 

-7 .99 XIO"2 

-2 .41 X10"1 

-2 .41 XIO"1 

4.28 XIO"2 

4.28 XIO"2 

-1 .05 XIO"2 

-1 .05 XIO"2 

-1.251X10° 
-1.599X10° 

Deviation 

1.3X10"3 

6.0X10"4 

1.1X10"4 

6.0X10"4 

2.5X10-4 

3.0X10"4 

4.0X10-3 

6.6XIO-4 

2.8X10-3 

5.2X10"4 

4.6X10-4 

9.1X10-3 

9.1X10-3 

3.4X10"4 

3.4X10"4 

6.9X10-4 

6.9X10-4 

4.7X10-2 
4.5X10-2 

a Included in the Brueckner approximation. 
b Identical with a previous diagram (but must be added to find the total fourth-order coefficient). 
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previous section [Eq. (3.9)], that it is sufficient for the low to intermediate density region, about the 
there to be no two-body bound state. same accuracy as has the ladder approximation, the 

The reason that the Brueckner approximation is Brueckner and complete theories cross at a density 
much closer here than the ladder approximation, in near &F/3= 1.25. That this crossing is unrelated to 
spite of the differences in the series, is readily apparent, saturation may be seen from Fig. 1 where the same 
Though the Brueckner approximation has, throughout crossing occurs at nearly the same density. 

APPENDIX 

Numerical Approximations to 0 and <I> 

For © (q) we have used 

@(2)=(2.2961625+4.0310705X10~y+2.774234^^^ 
-T- (1+8.6722594X 10~Y+3.0167356X 10~V+ 5.4870712 X 10~y+5.6951123 X 10~y 

+3.3456128X10-Y0+9.3739475X10-Y2), 0<q<3 
= (-1.9103958X101-3.2553859X10-3g2)-^ (1-5.1016626?2-2.3082938^ 

-4.5050462X10-V), 3<g<10 
= (2.2961625+9.38826106X 10~y+1.284509375X ^ 

+ 1.4627962X10-y+1.55705625X10-y), ^>10. (Al) 
For $o(<?) we have used 

$0(2)=(1.8439924+8.1173867?2+16.263688^+15.731397^6+5.0831540^+0.39386421^10) 
-v-(l+6.2859062?2+17.968033^+ 28.926281^+26.455817g8+12.907287^10+3.0140573g12 

+0.31234636?14), 0<q<2 
- (4.0781999X 10~1+2.1038983X l ( ^ y - O ^ 

+ 1.5111686X10-V-9.7225146X10-y), 2<g<15 
= (1.8439924+0.3251992159g2H (1+2.06019055^2+1.1876602113^+0.2280375132^), 15<q. (A2) 

For $2(2) we have used 

$2(g) = ^2[(1.9307396+4.7397050^2+6.9503809g4+2.4114265^6)^ (1+6.5398428^+19.991277^ 
+36.17l749^+40.746141g8+28.205082g10+11.33242g12+2.3412168^14+0.1986048^16)]1/2, 0<g<2 

= [(1.7841509X10-1+1.7038724X10-Y~4.7815722X10-Y^(l+3.0102673X10-y 
+ 1.5205565X 10~Y+ 1.5396959X 10~y+9.6045890 X 10~Y- 2.9892311 X 10-Y°)]1/2, 2< q< 15 

= ^[(1.9307396+9.413756495X10-Y+1.551145537X10-Y)^(l+4.089853626^2+6.383272234g4 

+4.627314251g6+1.476156636?
8+1.498720163X10~Y0+5.776466272X10-Y2 

+9.09971649X10~Y4)]1/2, g> 15. (A3) 


